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Abstract
Based on the pseudodifference operators’ ring and Lax pair, we present a
residue formula to calculate the conservation laws of discrete Lax equations.
The details are explained with two illustrative examples. Furthermore, some
numerical results are given to verify the method.

PACS number: 02.30.Ik

1. Introduction

Conservation laws are important in both mathematics and physics. Although the famous
Noether’s theorem has achieved great success in seeking the conservation laws of many
systems (see, e.g., [7]), it is still a nontrivial task to obtain the conservation laws for a
given system. Breakthroughs took place in the late 1960s when Miura et al found that the
KdV equation possesses infinitely many conservation laws. From then on, conservation laws
became one of the central ideas for integrable systems and some techniques were established
to derive them. Besides, there were also some works aimed directly at conservation laws.
Zhang et al [11] obtained a certain class of conserved quantities for some integrable systems
by mastersymmetries and recursion operators. Zhang [10] analysed the q-deformation of KdV
hierarchies and expressed the conservation laws by integration. Hereman et al presented some
powerful direct methods [4] for general differential or difference systems to compute the first
few conserved densities and fluxes.

In this paper, we will consider the conservation laws of integrable differential-difference
equations (IDDEs) of Lax type. We derive the conservation laws by calculating the residues
of related pseudodifference operators (PDOs). It is the discrete analogue of the differential
case, so it will explicitly provide many conservation laws for a discrete system. The key step
in the calculations is a residue formula named by us. Due to the discrete nature of PDOs, the
calculations of the residues are usually nontrivial tasks. To help the calculations, a special
technique is introduced. We choose two illustrative examples to demonstrate the method. The
surprising point is that the number of the conservation laws provided by the residue formula
is more than the number of the eigenvalues of the Lax operator (at least in some cases of the
first example).

1751-8113/07/133425+16$30.00 © 2007 IOP Publishing Ltd Printed in the UK 3425
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The periodic boundary condition is one of the most interesting cases in computation and
application. Therefore, we will restrict our arguments to the periodic boundary condition.

In section 2, we first present the theory of PDOs. Then by analysing a series of
commutators we establish a general discrete Lax equation. At the end of this section, we
give the residue formula for calculating the conserved quantities of the discrete Lax equation.
In section 3, we present two examples of discrete Lax systems and calculate their conserved
quantities. In section 4, we summarize the conclusions.

2. Theory of PDOs and construction of discrete Lax equations

In this section, we present the theory of PDOs and the method of constructing discrete Lax
equations by PDOs.

2.1. Constraints imposed by the boundary condition and symmetry

One way to generate an integrable system is by the Lax equation (see, e.g., [3])

L̇ = [P,L], (1)

where P and L are both linear operators. For example, by setting

L = ∂2 + u, P = ∂3 +
3

2
u∂ +

3

4
u′, ∂ = d

dx
,

we get KdV equation

4u̇ = u′′′ + 6uu′,

where u = u(x, t), u̇ = ∂
∂t

u and u′ = ∂
∂x

u. The systematical analysis of Lax equation (1)
involves the ring of pseudodifferential operators [3]. In the continuous case, the ring of
pseudodifferential operators and the boundary condition are relatively independent. That
is to say, the boundary condition will not affect the definitions of the operators in the
pseudodifferential operators’ ring. For example, operator ∂ is always defined as d

dx
no

matter what boundary condition we take. Therefore, for any function f the Leibniz rule
∂f = f ∂ + f ′ will not be affected by the boundary condition. So do the other formulae. The
situation changes in the discrete case. The boundary condition will impose some constraints
on the formal operators.

Let us first consider the algebraization of the shift operator � (see, e.g., [1, 8]). The
matrix representation of the operator � is

�ij = δi,j−1.

The Lie algebra

D =
{ ∑

−∞<i�∞
ai�

i, ai diagonal operators

}
= D+ + D−,

where

D+ =

 ∑

0�i�∞
ai�

i ∈ D


 , D− =

{ ∑
−∞<i<0

ai�
i ∈ D

}
,

is the foundation of the theory. Denote the number of grid points by N. We immediately
get �N = 1 by the periodic boundary condition. Therefore, the inverse of � is �N−1, i.e.,
�−1 = �N−1. Now it is clear that we cannot splitD intoD+ and D−. Hence, the algebraization
of the shift operator does not meet our demands.
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We may also consider the q-pseudodifference operator. However, the adoption of
q-pseudodifference operator will cause at least two difficulties. One difficulty is that it is
hard to cope with the periodic boundary condition. In fact, if we adopt the q-pseudodifference
operator and the periodic boundary condition at the same time, then there is not a reasonable
limit for the system. The other difficulty is that it is hard to deal with a translation invariant
system, because the discrete equations obtained by the q-pseudodifference operators cannot
manifestly keep the symmetry of translation.

In the following sections, it will be clear that the algebraization of the operator � [5, 6]
suffices for all the constraints. Another hint for adopting pseudodifference is that Haine et al
[5] revealed a close relationship between the differential and the ordinary difference.

2.2. Summary of PDOs ring: definition and basic formula

Here, we will present the basic ideas about PDOs. These materials are mainly borrowed from
[5]. There some other useful material can be found.

To understand the context of PDOs, it is convenient to compare it with the well-
known pseudodifferential operators. The principal theories of PDOs are parallel to that of
pseudodifferential ones. Therefore, we will first recall the basic ideas about pseudodifferential
operators.

The first idea in the theory of pseudodifferential operators is to view the derivative ∂ as a
linear operator acting on function space F = {f |f (x) ∈ C}:

(∂f )(x) = d

dx
f (x).

In addition, any function g is a diagonal operator acting on F :

(g ◦ f )(x) = g(x)f (x).

So, we should consider the minimal ring of operators containing derivative operator ∂ and all
diagonal operators f . In this differential operators’ ring, formula

∂f = fx∂ + f ∂ (2)

is of basic importance. In fact, formula (2) is just the Leibniz rule

∂ ◦ f ◦ g = ∂(fg)

= (fx)g + f ∂g

= fx ◦ g + f ◦ ∂ ◦ g, (3)

where f, fx are operators and g is an arbitrary function in F . The direct result of (2) is the
interim operator formula

∂nf =
∞∑

k=0

(
n

k

)
f (k)∂n−k, n ∈ Z+. (4)

The second idea in the theory of pseudodifferential operators is to replace Z+ in (4 ) by Z.
Thus, we have

∂nf =
∞∑

k=0

(
n

k

)
f (k)∂n−k, n ∈ Z. (5)

For example, ∂−1f = f ∂−1 − fx∂
−2 + fxx∂

−3 − · · ·. Finally, formula (5) defines the
pseudodifferential operators’ ring. All of the above is well known.
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In the discrete case, the situation is a little more complicated. Let h be a real constant.
The forward difference and backward difference

(�f · g)(i) = g(i + 1) − g(i)

h
,

(�b · g)(i) = g(i) − g(i − 1)

h
,

where g(i) denotes the ith component of vector g, are the two simplest choices. For the
convenience of the following paper, here we use the symbol �f · g but not �f g to denote
the forward difference of vector g. For simplicity, we only consider the forward difference.
The theory for the backward difference is similar. So, we define

� = �f .

Difference � is an operator acting on a vector space V of arbitrary but definite dimension N.
Parallel to the continuous case, any vector v of dimension N can be identified as an operator
by

(v ◦ f )(i) = v(i)f (i), i = 1, 2, . . . , N.

So we will consider the minimal ring containing � and all vectors of dimension N. The basic
formula for the ring is derived by rewriting the modified Leibniz rule

� · (fg) = (� · f )g + (f + h� · f )� · g (6)

into an operator form

� ◦ f ◦ g = (� · f ) ◦ g + (f + h� · f ) ◦ � ◦ g. (7)

In (6), the multiplication among vectors f,� · f and g is component multiplication, i.e.,
(fg)(i) = f (i)g(i). In (7), f and � · f are operators acting on V and g is a vector in V . But
in (7) vector g is arbitrary, so we have the operator equation

� ◦ f = (� · f ) + (f + h� · f ) ◦ �. (8)

For brevity, from now on we will omit the composition symbol ◦ in operator expressions.
Based on (8), we can immediately derive the interim

�nf =
∞∑

k=0

(
n

k

)
(�k(1 + h�)n−k) · f �n−k, n ∈ Z+. (9)

Note that the definition of �n · f is � · (�n−1 · f ). Formula (8) is the basic formula for the
difference operators’ ring. Finally, as continuous case, we replace Z+ in (9 ) by Z to get the
basic formula

�nf =
∞∑

k=0

(
n

k

)
(�k(1 + h�)n−k) · f �n−k, n ∈ Z (10)

for the PDOs ring.
The ring of PDOs itself is first a vector space

V� =
{ ∞∑

i=−∞
fi�

i, fi are operators corresponding to vectors of dimension N

}
(11)

with dimension infinity. Furthermore, we can prove that the multiplication (10) is associative.
Hence, V� is a ring.
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Let v = ∑m
i=−∞ fi�

i, fm �= 0. The order of v is defined as m. We denote it by Order(v),
i.e.,

Order(v) = m.

For the order of elements in V�, we have the following result.

Theorem 1. If Â ∈ V� and B̂ ∈ V�, then

Order(ÂB̂) = Order(Â) + Order(B̂).

Let Â = ∑n
i=−∞ ai�

i, an �= 0. We introduce the following definitions.

Definition 1.

Res(Â) = a−1.

Definition 2.

Pos(Â) =
{∑n

i=0 ai�
i, if n � 0,

0, if n < 0.

Definition 3.

R̂ = 1 + h�.

We also call Res(Â) the residue of Â.

2.3. A series of commutators

The commutator of Â and B̂ is not necessarily ÂB̂−B̂Â. For example, in [9] the q-commutator
[A,B]q = (DA)B − BA has been defined. In fact, the choice of commutator is important
and subtle for the theory of discrete Lax system. It is a nontrivial task to find meaningful
commutators. Among the meaningful commutators, the ordinary commutator [·, ·] is proved
to be one of them. In the following, we will see the commutator [·, ·]1

[Â, B̂]1 = ÂB̂ − B̂(R̂ · Â) (12)

is also useful.
First, we define

Â+ = R̂ÂR̂−1, (13)

Â− = R̂−1ÂR̂. (14)

One equivalent statement of (13) and (14) is

Â+R̂ = R̂Â, (15)

R̂Â− = ÂR̂. (16)

We also define

Ân+ = R̂nÂR̂−n, (17)

Ân− = R̂−nÂR̂n. (18)
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Let Â = ∑n
j=−∞ aj�

j . With (15), we can easily verify

Â+ =
n∑

j=−∞
R̂ · aj�

j = R̂ · Â.

In fact for any PDO Â, we can easily derive the following formulae:

Âk+ = R̂k · Â, Âk− = R̂−k · Â.

The following lemma explains why we introduce the commutator [·, ·]1.

Lemma 1. For any PDO Â and B̂, there exists an N-dimensional vector H, such that

Res([Â, B̂]1) = � · H,

here N still denotes the number of grid points.

For example, let a and b are vectors, Â = a�, B̂ = b�−1. Then [Â, B̂]1 =
a�b�−1 − b�−1a+� = (ab+ − ba) + � · (ba−)�−1 + · · ·. Hence H = ba−. Note that in the
previous example [Â, B̂] = a�b�−1 −b�−1a� = (ab+ −ba−)+(a� ·b+b� ·a2−)�−1 + · · ·.
Hence Res([Â, B̂]) = a� · b + b� · a2−. So the residue of [Â, B̂] is not necessarily of the
form � · H .

One immediate consequence of lemma 1 is
N−1∑
i=0

R̂i · Res([Â, B̂]1) = 0. (19)

We have taken advantage of the periodic boundary condition to get (19).
Now for integer m, we define the series of commutators as

[Â, B̂]m = ÂB̂ − B̂Âm+. (20)

Obviously, the commutators [·, ·] and [·, ·]1 are two special cases of (20).
We can directly verify the following results.

Corollary 1.

[Â, B̂]mR̂m−1 = Â(B̂R̂m−1) − (B̂R̂m−1)Â+, (21)

[Â, B̂]mR̂m = Â(B̂R̂m) − (B̂R̂m)Â. (22)

2.4. Get discrete Lax equations

We introduce the discrete Lax equation as

d

dt
L̂ = [P̂ , L̂]m, (23)

where m ∈ Z. According to (19) and (21), the conserved quantity of (23) is

j1 =
N−1∑
i=0

R̂i · Res(L̂R̂m−1), (24)

i.e., d
dt

j1 = 0.
Suppose

X̂R̂mX̂R̂m · · · R̂mX̂︸ ︷︷ ︸
nX̂

= L̂. (25)



Conservation laws of discrete Lax equations 3431

Then, we can conclude

d

dt
X̂ = [P̂ , X̂]m. (26)

We call X̂ the nth root of L̂. Let

Ŷ k =X̂R̂mX̂R̂m · · · R̂mX̂︸ ︷︷ ︸ .

kX̂
(27)

Then, we can verify

d

dt
Ŷ k = [P̂ , Ŷ k]m. (28)

According to (19) and (21),

j k
n

=
N−1∑
i=0

R̂i · Res(Ŷ kR̂
m−1), k = 1, 2, . . . , (29)

are all constants of motion. We call formula (29) residue formula, which is the base for our
calculations of the conserved quantities of the discrete Lax system.

Note that the operator P̂ in (23) is not arbitrary. It depends on the operator L̂. For
L̂ = �n +

∑n−1
i=−∞ li�

i , we can choose P̂ as

P̂ s = Pos((X̂R̂m)s), s ∈ N, (30)

where X̂ is the nth root of L̂ .
The following theorem states the equivalence of (23) for different m.

Theorem 2.

d

dt
L̂ = [P̂ , L̂]m � d

dt
(L̂R̂m) = [P̂ , L̂R̂m]. (31)

However, theorem 2 does not state that the commutator [·, ·] is more superior. Sometimes it is
convenient to choose m �= 0.

We summarize the few steps for the calculations of the conservation laws of IDDEs. First,
we have to write the IDDEs into the discrete Lax equation (23). This step will give the detailed
expression of P̂ and L̂. Second, we get the nth root of L̂ by (25). Third, we obtain Ŷ k by (27).
At last, we calculate the conservation laws by the residue formula (29).

3. Applications of the theory

In this section, we present two illustrative examples. These examples are applications of
the theory introduced by section 2. Moreover, we introduce an additional technique to help
calculate the residues of PDOs. Some numerical results are also given to show the validity of
the theory.

In the first example, we find that the residue formula is not equivalent to the trace formula.
In the second example, we find that the PDOs are crucial to the construction of IDDEs.
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3.1. Semi-discrete KdV equation

The Lax operator of KdV equation is L = ∂2 +u(x). But the operator L̂ of semi-discrete KdV
cannot take such a simple form. In fact, L̂ has the form

L̂ = �2 + v� + u, (32)

where u, v are N-dimensional vectors. For convenience, we take
d

dt
L̂ = [P̂ , L̂] (33)

as the motion equation. Suppose the square root of L̂ is

L̂
1
2 = � + l̄0 +

∞∑
i=1

l̄i�
−i . (34)

According to (25) (n = 2,m = 0), we have

L̂
1
2 L̂

1
2 = L̂. (35)

By comparing the two sides of (35), we get

l̄0 + (l̄0)+ = v,

(l̄0)+ − l̄0

h
+ (l̄0)

2 + l̄1 + (l̄1)+ = u,

(l̄1)+ − l̄1

h
+ (l̄0 + (l̄0)−)l̄1 + l̄2 + (l̄2)+ = 0, (36)

· · · + l̄3 + (l̄3)+ = 0,

· · · ,
where (l̄0)+ = R̂ · l̄0, (l̄0)− = R̂−1 · l̄0, (l̄2)+ = R̂ · l̄2 and so on. Note that for any vector v,
(v)n+(i) = v(n + i), where v(i) denotes the ith component of v.

By (30), the operator P̂ is determined by

P̂ = �3 + (v + (l̄0)2+)�
2 +

(
u + v(l̄0)+ + (l̄1)2+ + 2

(l̄0)2+ − (l̄0)+

h

)
�

+ l̄2 + ul̄0 + v(l̄1)+ + v
(l̄0)+ − l̄0

h
+ 2

(l̄1)2+ − (l̄1)+

h
+

l̄0 − 2(l̄0)+ + (l̄0)2+

h2
, (37)

where (l̄0)2+ = R̂2 · l̄0, (l̄1)2+ = R̂2 · l̄1. At last by substituting (37) and (32) into (33), we
obtain the differential equations

v̇ = (l̄0)
2
+(l̄1)2+ + (l̄1)+(l̄1)2+ + (l̄1)

2
2+ − 2l̄0(l̄2)+ − l̄2

0 l̄1 − l̄2
1 − l̄2

0(l̄1)+ − 2l̄0(l̄0)+(l̄1)+

− (l̄0)
2
+(l̄1)+ − l̄1(l̄1)+ − 2(l̄0)+(l̄2)+ +

2

h
(l̄0 l̄1 + l̄0(l̄1)+ + (l̄0)+(l̄1)+

− (l̄0)+(l̄1)2+ + 2(l̄2)+) +
(l̄1)2+ − l̄1

h2

u̇ = · · · = v̇

h
(38)

for the semi-discrete KdV system.
Suppose the number of grid points N is odd and let M be an N × N matrix

M =




1 1 0 · · · 0
0 1 1 · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · 1 1
1 0 · · · 0 1


 .
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By solving the first equation of (36), we immediately get

l̄0 = M−1v. (39)

By substituting (39) into the second equation of (36) we immediately obtain l̄1. By substituting
l0 and l1 into the third equation of (36), we obtain l̄2. By substituting l0, l1 and l2 into the
fourth equation of (36), we obtain l̄3, and so on and so forth. Therefore, we have explicit
expressions of l̄k (k = 0, 1, 2, . . .) as a function of u and v. So, the semi-discrete KdV system
(38) is the differential equations of u and v. Of course, we can as well regard (38) as the
differential equations of l̄0 and l̄1. From the second equation of (38), we know v must not
be zero, else u is constant and the system is trivial. If N is even, M will not have an inverse.
So the semi-discrete KdV system (38) must be different from the usual discretization of KdV
equation where N is arbitrary.

According to the residue formula (29), the conservation laws can be calculated by

j s
2

=
N−1∑
i=0

R̂i · Res(L̂
s
2 R̂−1), s ∈ Z+. (40)

It is thoughtless to expand R̂−1 in (40) as the power series of �. We need an additional
technique to calculate the residue of L̂

s
2 R̂−1. Let Â = ∑n

i=−∞ ai�
i . The residue of ÂR̂−1

can be determined by the following proposition.

Proposition 1.

Res(ÂR̂−1) = 1

h

n∑
i=0

(−1

h

)i

ai . (41)

Proof. Let B̂ = ÂR̂−1. Then, we have

Â = B̂R̂ = B̂(1 + h�). (42)

So, we can assume that B̂ = ∑n−1
i=−∞ bi�

i . Substituting the expansion of Â and B̂ into (42),

comparing the expansion of both sides of (42), we obtain b−1 = 1
h

∑n
i=0

(−1
h

)i
ai . That is

just (41). �

Now we can calculate the conservation laws by (40). The first few conserved quantities
are

j 1
2

=
N−1∑
i=0

l̄0(i),

j 2
2

=
N−1∑
i=0

u(i) − v(i)/h,

(43)

j 3
2

=
N−1∑
i=0

(l̄0(i) + v(i))/h2 − (l̄1(i) + ui + l̄0(i)v(i))/h + (l̄2(i) + l̄0(i)u(i) + v(i − 1)l̄1(i)),

j 4
2

=
N−1∑
i=0

u(i)2 − 2u(i)v(i)/h + (2u(i) + v(i)2)/h2 − 2v(i)/h3.

Note that l̄0(i) is the ith component of vector l̄0 and so on. We take the third equation of (43)
as an example to show the calculation details. We know

L̂
3
2 = L̂

1
2 L̂. (44)
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By substituting (34) and (32) into (44), we obtain

L̂
3
2 = �3 + (l̄0 + R̂ · v)�2 + (� · v + R̂ · u + l̄0v + l̄1)� + (� · u + l̄0u + l̄1R̂

−1 · v + l̄2) + · · · .
(45)

According to proposition 1, we know

Res(L̂
3
2 R̂−1) = 1

h

(
(� · u + l̄0u + l̄1R̂

−1 · v + l̄2)

− 1

h
(� · v + R̂ · u + l̄0v + l̄1) +

1

h2
(l̄0 + R̂ · v) − 1

h3

)
. (46)

By (40), we know

j 3
2

=
N−1∑
i=0

R̂i · Res
(
L̂

3
2 R̂−1

)
. (47)

Then by substituting (46) into (47), we obtain

j 3
2

= 1

h

N−1∑
i=0

(
((� · u)(i) + l̄0(i)u(i) + l̄1(i)v(i − 1) + l̄2(i)) − 1

h
((� · v)(i) + u(i + 1)

+ l̄0(i)v(i) + l̄1(i)) +
1

h2
(l̄0(i) + v(i + 1)) − 1

h3

)
. (48)

Note (� · v)(i) = (v(i + 1) − v(i)) /h. So
∑N−1

i=0 (� · v)(i) = 0. For the same reason, the
sum

∑N−1
i=0 (� · u)(i) is also zero. Therefore, (48) becomes

j 3
2

= 1

h

N−1∑
i=0

(
(l̄0(i)u(i) + l̄1(i)v(i − 1) + l̄2(i)) − 1

h
(u(i + 1) + l̄0(i)v(i) + l̄1(i))

+
1

h2
(l̄0(i) + v(i + 1)) − 1

h3

)
. (49)

If we redefine j 3
2

as

j 3
2

=
N−1∑
i=0

(
(l̄0(i)u(i) + l̄1(i)v(i − 1) + l̄2(i)) − 1

h
(u(i + 1) + l̄0(i)v(i) + l̄1(i))

+
1

h2
(l̄0(i) + v(i + 1))

)
, (50)

then the new j 3
2

is also a conserved quantity. Equation (50) is just the third of (43).
For any positive integer s, formula (40) will provide a conserved quantity. So, formula

(40) provides infinity of conserved quantities. But here the number of grid points is N, hence
the number of unknown functions {u(i)}∪ {v(i)} is 2N . (Note that u(i) and v(i) are unknown
functions of t.) In addition, variable t does not manifestly appear in formula (40). So, the
number of functionally independent conserved quantities must be less than 2N . Then, the
natural question is that for given N how many functionally independent conserved quantities
formula (40) provides. To see the question more clearly, let us suppose N = 3. Now we can
expand the summation in (43)

j 1
2

= l̄0(0) + l̄0(1) + l̄0(2),

j 2
2

= u(0) + u(1) + u(2) − 1

h
(v(0) + v(1) + v(2)),
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j 3
2

= 1

h2
(v(0) + v(1) + v(2) + l̄0(0) + l̄0(1) + l̄0(2)) − 1

h
(u(0) + u(1) + u(2) + l̄1(0)

+ l̄1(1) + l̄(2) + v(0)l̄0(0) + v(1)l̄0(1) + v(2)l̄0(2)) + l̄2(0) + l̄2(1) + l̄2(2)

+ u(0)l̄0(0) + u(1)l̄0(1) + u(2)l̄0(2) + v(0)l̄1(1) + v(1)l̄1(2) + v(2)l̄1(0),

j 4
2

= 2

h2
(u(0) + u(1) + u(2)) +

(
u(0) − 1

h
v(0)

)2

+

(
u(1) − 1

h
v(1)

)2

+

(
u(2) − 1

h
v(2)

)2

− 2

h3
(v(0) + v(1) + v(2)) . (51)

Thanks to (36), we can eliminate u(i), v(i) and l̄2(i) (i = 0, 1, 2) in (51). Then, we get

j 1
2

= l̄0(0) + l̄0(1) + l̄0(2),

j 2
2

+
2

h
j 1

2
= l̄0(0)2 + l̄0(1)2 + l̄0(2)2 + 2(l̄1(0) + l̄1(1) + l̄1(2)),

hj 3
2

+ 3j 2
2

+
3

h
j 1

2
= 3(l̄1(0) + l̄1(1) + l̄1(2)) + h(· · ·),

hj 4
2

+
8

3
j 3

2
+

2

h
j 2

2
= −4

3
(l̄0(0)3 + l̄0(1)3 + l̄0(2)3) + h(· · ·).

Now it is clear that the four js are functionally independent, because the set of functions
{l̄0(0), l̄0(1), l̄0(2), l̄1(0), l̄1(1), l̄1(2)} are functionally independent. Hence, we have proved
that the residue formula provides at least four functionally independent conserved quantities
for the semi-discrete KdV equation with the number of grid points N = 3.

We emphasize that the residue formula is not equivalent to the trace formula. The trace
formula is the familiar way to calculate the conserved quantities for equations in the form of
(33). To apply the trace formula, equation (33) is explained as a matrix equation where P̂

and L̂ are both N × N matrices. Their conserved quantities are Ck = Trace(L̂k), k ∈ N .
If N = 3, among {Ck|k ∈ N} there are at most three functionally independent conserved
quantities corresponding to the three eigenvalues of L̂. Therefore, the trace formula can
provide at most three functionally independent conserved quantities for the N = 3 case of
semi-discrete KdV equation. Whereas we have proved that the residue formula provides at
least four independent conserved quantities for the N = 3 case of semi-discrete KdV equation.
Thus, the residue formula is not equivalent to the trace formula. The residue formula is, in
our example, superior to the trace formula.

Conserved quantity j 5
2

is much more complicated

j 5
2

=
N−1∑
i=0

(
u(i)2 l̄0(i) + u(i)v(i)l̄1(i + 1) + u(i + 1)v(i)l̄1(i + 1) + v(i)v(i + 1)l̄2(i + 2)

+ u(i)l̄2(i) + u(i)l̄2(i + 2) + v(i)l̄3(i + 3) + v(i)l̄3(i + 1) + l̄4(i)

+
1

h
(· · ·) +

1

h2
(· · ·) +

1

h3
(· · ·) +

1

h4
(2v(i) + l̄0(i))

)
. (52)

We believe (52) induces the fifth functionally independent conserved quantity for N = 3.
According to the general theory of ordinary differential equations [2], there are only n − 1
time-independent first integrals for n first-order ordinary differential equations. In the N = 3
case of semi-discrete KdV equation there are six unknown functions, so there are only five
time-independent constants of motion. Hence, it will be a surprising result if the residue
formula could provide all the five time-independent first integrals.

When N is small enough (such as N = 3), we can directly verify that js are constants of
motion by verifying d

dt
j s

2
= 0. But the expressions involved are too lengthy, we omit them
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Figure 1. Constant of motion j̄ 1
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versus time t.
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Figure 3. Evolution of l̄0(1).

here. Fortunately, numerical experiments could provide a concise and convincing verification
of the theory (even for relatively large N).

Figures 1–3 show the numerical results of the semi-discrete KdV (38) with parameters
N = 5, h = 2

N
. According to (38), u = v

h
+Vc, where Vc is a constant vector. In the numerical

experiments we assume that Vc = 0. Hence, j 2
2

and j 4
2

are always zero. So, we only need to

compute j 1
2

and j 3
2
. Here, we computed j̄ 1

2
= ∑N

i=1 l̄0(i) and j̄ 3
2

= ∑N
i=1 l̄2(i)+v(i)l̄1(i)− l̄1(i)

h
,

which are simplified versions of j 1
2

and j 3
2
. The initial condition is l̄0(i) = cos

(
2πi
N

)
. (Here, l̄1

is dependent on l̄0 because of the new restriction u = v
h

.) The numerical results are obtained
by Mathematica NDSolve. Figures 1 and 2 show that j̄ 1

2
and j̄ 3

2
are indeed constants of
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motion. Figure 3 indicates that the evolution time is long enough. (The results also verified
the capability of the ‘NDSolve’ function of Mathematica.)

3.2. An example of m = 1

In this example, we take

d

dt
L̂ = [P̂ , L̂]1 = P̂ L̂ − L̂P̂ + (53)

as motion equation. At the same time we assume that P̂ and L̂ have the form

L̂ = l0 + l1�
−1,

(54)
P̂ = �(p1� + p0),

where l0, l1, p0 and p1 are N-dimensional vectors. By substituting (54) into (53), we obtain
p0 and p1

p1 = αl0(l0)−,
(55)

p0 = β(l0)− + αl0

(
l0 + (l0)2−

h
+ l1 + (l1)−

)
,

where α and β are arbitrary complex constants.
So, the motion equation (53) becomes

l̇0 = βl0

(
l0 − (l0)−

h
+ (l1)+ − l1

)
+

α

h2
l0(l0)−(l0 − (l0)2−) + αl0

(
(l1)

2
+ − l2

1

)
+

α

h
l0((l0)+(l1)2+ + l0(l1)+ + l0l1 − (l0)−(l1)− − 2(l0)−l1),

l̇1 = β

h
(l0(l1)+ − (l0)−l1) +

α

h2
(l0(l0)+(l1)2+ − (l0)2−(l0)−l1)

+
α

h

(
l0(l1)

2
+ + l0(l1)+l1 − (l0)−l2

1 − (l0)−l1(l1)−
)
. (56)

By setting l0 → v(x, t), l1 → ρ(x, t) and α → θh, we can get the continuous limit of (56):

vt = βv(vx + ρx) + θ(2v2vx + (ρ2)xv + 4v(ρv)x),
(57)

ρt = β(ρv)t + 2θ((ρv2)x + (ρ2v)x).

If we interpret ρ and v as the density and the speed of the vehicles on a road, then the
β = 1, θ = 0 case of (57) can be interpreted as a traffic toy model. The second of (57) is the
continuity equation, while the first of (57) is the control strategy of the driver.

From the residue formula, we can calculate the conservation laws of (56) directly. The
first few conservation laws are

j1 =
N∑

i=1

l1(i),

j2 =
N∑

i=1

2l0(i)l1(i + 1) + hl1(i)
2, (58)

j3 =
N∑

i=0

(3l0(i)l0(i + 1)l1(i + 2) + 3hl0(i)l1(i)l1(i + 1) + 3hl0(i − 1)l1(i)
2 + h2l1(i)

3),

where l0(i) and l1(i) are the ith components of vector l0 and l1, respectively. If the grid number
N is 2, we can easily verify (by setting h → 0) that three js are independent. In this case, there



3438 Y-Q Li et al

0.2 0.4 0.6 0.8 1
t

-13
-3. 10

-13
-2. 10

 -13
-1. 10

Figure 4. Constant of motion j1 − 120 versus time t.
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Figure 6. Constant of motion j3 − 16679.4 versus t.

are four unknown functions, so there are only three time-independent first integrals. Again the
theory provides all the time-independent constants of motion. If N = 3, the residue formula
provides four time-independent first integrals. So, it seems that the residue formula provides
N + 1 constants of motion of (56).

Equations (56), as far as we known, are new. If we artificially write (56) into

d

dt
(l0� + l1) = �(p1� + p0)(l0� + l1) − (l0� + l1)((p1)+� + (p0)+)�, (59)

then we could not connect (59) with any matrix eigenvalue problems, though (59) itself can
be thought as a matrix differential equation. Without PDOs we would not be able to construct
(56). Therefore, the PDOs are crucial in the construction of IDDEs.
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Figure 7. Evolution of l0(1).

The numerical results (N = 6, α = 1, β = 0, h = 2
N

) of j1, j2 and j3 are displayed in
figures 4–6. Figure 7 is the graph of l0(1), which indicates that the evolution time is long
enough. The initial condition is l0(i) = 2 + cos

(
2π i
N

)
, l1(i) = 20 + sin

(
2π i
N

)
. It is easy to

see that if it were not for the computing errors, j1, j2 and j3 will all be true constants. The
numerical results are obtained by Mathematica NDSolve.

4. Conclusions

We have proposed a series of commutators for the construction of discrete Lax equation by
the PDOs. The two most important commutators in the series are [·, ·] and [·, ·]1. We have
presented a residue formula for the calculations of the conservation laws of the discrete Lax
equation. We have also demonstrated the theory by two examples. The periodic boundary
condition has been dealt with successfully.

We find that the residue formula is excellent in the calculations of the conservation laws
of the discrete Lax system. The residue formula is not equivalent to the trace formula.
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